202 research outputs found

    Non-myopic multipoint multifidelity Bayesian framework for multidisciplinary design

    Get PDF
    The adoption of high-fidelity models in Multidisciplinary Design Optimization (MDO) permits to enhance the identification of superior design configurations, but would prohibitively rise the demand for computational resources and time. Multifidelity Bayesian Optimization (MFBO) efficiently combines information from multiple models at different levels of fidelity to accelerate the MDO procedure. State-of-the-art MFBO methods currently meet two major limitations: i) the sequential adaptive sampling precludes parallel computations of high-fidelity models, and ii) the search scheme measures the utility of new design evaluations only at the immediate next iteration. This paper proposes a Non-Myopic Multipoint Multifidelity Bayesian Optimization (NM3-BO) algorithm to sensitively accelerate MDO overcoming the limitations of standard methods. NM3-BO selects a batch of promising design configurations to be evaluated in parallel, and quantifies the expected long-term improvement of these designs at future steps of the optimization. Our learning scheme leverages an original acquisition function based on the combination of a two-step lookahead policy and a local penalization strategy to measure the future utility achieved evaluating multiple design configurations simultaneously. We observe that the proposed framework permits to sensitively accelerate the MDO of a space vehicle and outperforms popular algorithms

    Dark Matter & Dark Energy from a single scalar field: CMB spectrum and matter transfer function

    Get PDF
    The dual axion model (DAM), yielding bot DM and DE form a PQ-like scalar field solving the strong CP problem, is known to allow a fair fit of CMB data. Recently, however, it was shown that its transfer function exhibits significant anomalies, causing difficulties to fit deep galaxy sample data. Here we show how DAM can be modified to agree with the latter data set. The modification follows the pattern suggested to reconcile any PQ-like approach with gravity. Modified DAM allows precise predictions which can be testable against future CMB and/or deep sample data.Comment: 15 pages, 8 figures, accepted for publication in JCA

    A machine learning enabled multi-fidelity platform for the integrated design of aircraft systems

    Get PDF
    The push toward reducing the aircraft development cycle timemotivates the development of collaborative frameworks that enable themore integrated design of aircraft and their systems. The ModellIng and Simulation tools for Systems IntegratiONon Aircraft (MISSION) project aims to develop an integratedmodelling and simulation framework. This paper focuses on some recent advancements in theMISSION project and presents a design framework that combines a filtering process to down-select feasible architectures, amodeling platformthat simulates the power system of the aircraft, and a machine learning-based clustering and optimization module. This framework enables the designer to prioritize different designs and offers traceability on the optimal choices. In addition, it enables the integration of models at multiple levels of fidelity depending on the size of the design space and the accuracy required. It is demonstrated for the electrification of the Primary Flight Control System (PFCS) and the landing gear braking system using different electric actuation technologies. The performance of different architectures is analyzed with respect to key performance indicators (fuel burn, weight, power). The optimization process benefits from a data-driven localization step to identify sets of similar architectures. The framework demonstrates the capability of optimizing across multiple, different system architectures in an efficient way that is scalable for larger design spaces and larger dimensionality problems

    Learning for predictions: Real-time reliability assessment of aerospace systems

    Get PDF
    Prognostics and Health Management (PHM) aim to predict the Remaining Useful Life (RUL) of a system and to allow a timely planning of replacement of components, limiting the need for corrective maintenance and the down time of equipment. A major challenge in system prognostics is the availability of accurate physics based representations of the grow rate of faults. Additionally, the analysis of data acquired during flight operations is traditionally time consuming and expensive. This work proposes a computational method to overcome these limitations through the dynamic adaptation of the state-space model of fault propagation to on-board observations of system’s health. Our approach aims at enabling real-time assessment of systems health and reliability through fast predictions of the Remaining Useful Life that account for uncertainty. The strategy combines physics-based knowledge of the system damage propagation rate, machine learning and real-time measurements of the health status to obtain an accurate estimate of the RUL of aerospace systems. The RUL prediction algorithm relies on a dynamical estimator filter, which allows to deal with nonlinear systems affected by uncertainties with unknown distribution. The proposed method integrates a dynamical model of the fault propagation, accounting for the current and past measured health conditions, the past time history of the operating conditions (such as input command, load, temperature, etc.), and the expected future operating conditions. The model leverages the knowledge collected through the record of past fault measurements, and dynamically adapts the prediction of the damage propagation by learning from the observed time history. The original method is demonstrated for the RUL prediction of an electromechanical actuator for aircraft flight controls. We observe that the strategy allows to refine rapid predictions of the RUL in fractions of seconds by progressively learning from on-board acquisitions

    Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

    Get PDF
    Prognostics and Health Management (PHM) are emerging approaches to product life cycle that will maintain system safety and improve reliability, while reducing operating and maintenance costs. This is particularly relevant for aerospace systems, where high levels of integrity and high performances are required at the same time. We propose a novel strategy for the nearly real-time Fault Detection and Identification (FDI) of a dynamical assembly, and for the estimation of Remaining Useful Life (RUL) of the system. The availability of a timely estimate of the health status of the system will allow for an informed adaptive planning of maintenance and a dynamical reconfiguration of the mission profile, reducing operating costs and improving reliability. This work addresses the three phases of the prognostic flow - namely (1) signal acquisition, (2) Fault Detection and Identification, and (3) Remaining Useful Life estimation - and introduces a computationally efficient procedure suitable for real-time, on-board execution. To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques to obtain efficient representations (surrogate models) suitable for nearly real-time applications. Additionally, we propose an importance sampling strategy and a novel approach to model damage propagation for dynamical systems. The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator (EMA) for secondary flight controls. The results show that the proposed method allows for a high precision in the evaluation of the system RUL, while outperforming common model-based techniques in terms of computational time.Comment: 57 page

    Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

    Get PDF
    Prognostics and health management (PHM) are emerging approaches to product life cycle that will maintain system safety and improve reliability, while reducing operating and maintenance costs. This is particularly relevant for aerospace systems, where high levels of integrity and high performances are required at the same time. We propose a novel strategy for the nearly real-time fault detection and identification (FDI) of a dynamical assembly, and for the estimation of remaining useful life (RUL) of the system. The availability of a timely estimate of the health status of the system will allow for an informed adaptive planning of maintenance and a dynamical reconfiguration of the mission profile, reducing operating costs and improving reliability. This work addresses the three phases of the prognostic flow – namely (1) signal acquisition, (2) fault detection and identification, and (3) remaining useful life estimation – and introduces a computationally efficient procedure suitable for real-time, on-board execution. To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques to obtain efficient representations (surrogate models) suitable for nearly real-time applications. Additionally, we propose an importance sampling strategy and a novel approach to model damage propagation for dynamical systems. The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator (EMA) for secondary flight controls. The results show that the proposed method allows for a high precision in the evaluation of the system RUL, while outperforming common model-based techniques in terms of computational time
    • …
    corecore